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Abstract

Radix-k was introduced in 2009 as a configurable image compositing algorithm. The ability to tune it by selecting
k-values allows it to benefit more from pixel reduction and compression optimizations than its predecessors. This
paper describes such optimizations in Radix-k, analyzes their effects, and demonstrates improved performance
and scalability. In addition to bounding and run-length encoding pixels, k-value selection and load balance are
regulated at run-time. Performance is systematically analyzed for an array of process counts, image sizes, and
HPC and graphics clusters. Analyses are performed using compositing of synthetic images and also in the context
of a complete volume renderer and scientific data. We demonstrate increased performance over binary swap and
show that 64 megapixels can be composited at rates of 0.08 seconds, or 12.5 frames per second, at 32 K processes.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Hardware Architecture]: Parallel processing—
I.3.2 [Graphics Systems]: Distributed / network graphics—I.3.7 [Three-Dimensional Graphics and Realism]:
Raytracing—I.3.8 [Applications]: Image compositing—Volume rendering

1. Introduction

Data-parallel visualization algorithms are a critical ingredi-
ent of large-scale scientific computation. Just as simulations
scale to hundreds of thousands of processes and compute
tens of billions of grid points per time-step, visualization
must be performed at commensurate scale in order to ac-
curately represent the fidelity of the computed data. In sort-
last parallel rendering, this requires parallel compositing of
images that are tens of megapixels in size, from tens of thou-
sands of processes.

Radix-k is a relatively new, configurable algorithm for
parallel image compositing. Its configurations include binary
swap, direct-send, and many points in between. One primary
distinction of Radix-k when compared to other algorithms is
its ability to overlap communication and computation. As a
result of this, it can be tuned to underlying hardware support
for parallel communication channels and offer superior per-
formance over other methods. Optimizations that bound and
compress pixels can allow Radix-k to achieve even better
performance and scalability.

In this paper, we demonstrate a new capability for tun-
ing the Radix-k algorithm to various architectures along
with benchmarking performance and scalability. The results
of our analyses show significant improvements over binary
swap, the de facto standard for image compositing. Along
with tuning to specific architectures, we supplement Radix-
k with an advanced compression implementation and a new
load-balancing method, allowing for faster compositing and
better scalability on diverse architectures. Tests utilized syn-
thetic images where we could control the bounded pixel re-
gions, and a parallel volume renderer with actual scientific
data.

Our contributions are (1) augmenting Radix-k with an ef-
ficient run-length encoding scheme that compresses message
length and accelerates compositing, (2) determining target k-
values for various HPC and cluster architectures using these
improvements, (3) developing and testing a new algorithm
for load balancing, and (4) demonstrating improved perfor-
mance and scalability on Blue Gene/P, Cray XT5, and graph-
ics clusters in a parallel volume rendering application.
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2. Background

In sort-last parallel rendering [MCEF94], data are parti-
tioned among processes, rendering occurs locally at each
process, and the resulting images are depth-sorted or com-
posited at the end. Cavin et al. [CMF05] surveyed meth-
ods for sort-last compositing and analyzed relative theo-
retical performance. Compositing algorithms traditionally
are categorized as direct-send [Hsu93,Neu94,MI97], binary
swap [MPHK94], and parallel pipeline [LRN96]. Tradition-
ally used in distributed memory architectures, they have also
been tested in shared memory machines [RH00]. Direct-
send and parallel pipeline methods have been eclipsed by
binary swap, although hybrid combinations of direct-send
and binary swap are being studied. Nonaka et al. [NOM08]
combined binary swap with direct-send and binary tree to
improve performance. Yu et al. [YWM08] extended binary
swap compositing to non-power-of-two numbers of pro-
cesses in 2-3 swap compositing by communicating in groups
of two and three members.

The Radix-k algorithm [PGR∗09] allows the amount of
communication concurrency to be tuned to the architecture.
By selecting appropriate k-values (the number of messaging
partners in a group), it can offer more parallelism than bi-
nary swap while avoiding message contention that can occur
at large numbers of processes with direct-send. Radix-k does
not incur a penalty for non-power-of-two processes, unlike
the 2-3 swap extension to binary swap. Through careful im-
plementation of nonblocking communication, Radix-k over-
laps the compositing with communication as much as possi-
ble. The benefits, however, depend on the underlying hard-
ware support; when an architecture does not manage con-
current messages or overlapped computation effectively, it
is better to select smaller k-values, closer to binary swap.

Direct-send and binary swap can be optimized by schedul-
ing communication and by exploiting image characteris-
tics such as spatial locality and sparseness. The SLIC
algorithm [SML∗03] schedules communication in direct-
send. Run-length encoding (RLE) images before composit-
ing achieves lossless compression. For example, Ahrens et
al. [AP98] reported an average RLE compression ratio of
approximately 20:1 for intermediate zoom levels.

Using bounding boxes to identify “active” pixels is a
practical way to reduce message size [MWP01]. Neu-
mann [Neu93] estimated that the active image size for each
process could be approximated by

i
p2/3

(1)

where i is the image size and p is the number of processes.
Yang et al. [YYC01] analyzed bounding boxes and RLE
optimization for binary swap and Takeuchi et al. [TIH03]
implemented binary swap with bounding boxes, interleaved
splitting, and RLE. Takeuchi et al. began with the local

image computed by Equation 1, and they reported RLE com-
pression ratios of approximately 7:1.

Image compositing can be implemented in parallel ren-
dering using libraries such as IceT [MWP01]. Chromium
[HHN∗02] is another system that supports compositing
across cluster nodes and tiled displays. In addition to vol-
ume rendering, these libraries support polygon rendering by
including a depth value per pixel and modifying the com-
positing operator [MAF07].

3. Implementing Improvements to Radix-k

A complete description of the original, unoptimized Radix-
k algorithm can be found in [PGR∗09]. Briefly, composit-
ing occurs in rounds, each round containing a number of
groups that operate independently. Binary swap uses groups
of size two and direct-send uses one group for all processes.
In Radix-k, groups can be factored into distinct sizes of k for
each round.

For example, 64 processes can be composited with k-
values of [2, 2, 2, 2, 2, 2] (binary swap), or with a single
round of k = [64] (direct-send), or something in between
such as k = [8, 8]. Unlike kd-partitioning in some binary
swap implementations [MPHK94], the image is partitioned
by scanlines. Within a round, each group of k participants
performs a direct-send message pattern local to that group,
such that each participant takes ownership of 1/k of the cur-
rent image being composited by that group. This design phi-
losophy avoids network contention that may occur in direct-
send, while being able to saturate the network more than bi-
nary swap. We discuss our implementation of pixel compres-
sion, automatic k-value selection, and load balancing below.

3.1. Accelerations

By delineating pixels with bounding boxes, compositing can
be accelerated by operating on only the pixels that were pro-
duced by a local node, rather than on the entire image. As the
number of compositing rounds grows, however, the union of
bounding boxes from earlier rounds can accumulate many
unnecessary pixels. This can be avoided by run-length en-
coding (RLE) the images.

Typical RLE implementations store a count of contigu-
ous identical pixels in scanlines, followed by the pixel value,
in the same buffer [AP98]. This approach has several draw-
backs. Transfer functions often create few contiguous identi-
cal pixels, hindering the amount of compression and adding
overhead. Taking subregions of an encoded image, a task
that is required in each round, is costly when one buffer has
both index and pixel values because it requires additional
copying. Also, byte alignment issues can arise when pix-
els and counts are different sizes and do not align on word
boundaries.
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We designed a different implementation to avoid these
drawbacks. In our implementation, RLE is used to compress
only empty areas and the bounding box information is uti-
lized to accelerate this step. Two separate buffers are used:
one for storing alternating counts of empty and nonempty
pixels in scanlines, and one for storing the nonempty pixels.
Using this implementation, a subset of an encoded image
can be taken by first constructing a new index to represent
the subset, and then by assigning a pointer to the proper lo-
cation in the pixel buffer of the fully encoded image. This
way, unnecessary memory copy and allocation are avoided.

Similar to [AP98, MWP01], images remain encoded
throughout compositing, but we do not iterate through each
pixel of the encoded images. Overlapping areas are first
computed using the index of both images. By doing this,
complete chunks of nonoverlapping areas are copied to the
final image, and only the overlapping nonempty pixels are
visited when compositing.

3.2. K-value Selection

The choice of k-values plays a vital role in maximizing
communication and compositing overlap. The k-values de-
pend on the machine architecture (network topology, band-
width, latency), number of processes, and image size. Re-
sults from [PGR∗09] showed that k-values of eight per-
formed well on Blue Gene/P for various cases using unopti-
mized Radix-k. Compression, however, changes the perfor-
mance of these k-values.

We tested a wide array of process counts and image sizes
to discover “target” k-values for numerous architectures. The
target k-value represents the optimal size of a group for any
round. We used these results in our implementation as a
lookup table for k-value selection. We envision similar test-
ing can be automated to appropriately select k-values when
installed on new architectures.

3.3. Load Balancing

While reducing the total amount of compositing work,
bounding boxes and compression can cause work distribu-
tion among processes to become uneven. Research has been
conducted to load balance binary swap by interleaving scan-
lines among processes [TIH03]. One central reason exists
why we chose not to implement this method: when the im-
age is completely composited, processes do not contain con-
tiguous portions of the image. If the image is to be writ-
ten in parallel, either an extra global communication step to
create contiguous portions is introduced or there are many
more disk writes and seeks when writing the image. Both of
these have severe performance implications. We describe a
new method for load balancing within and across groups that
keeps the image distributed in contiguous portions.

Figure 1: Illustration of load balancing using four processes
and k-values of two. In the first step, groups (enclosed by
the gray areas) compute a local partition (red lines) of their
image such that group members perform equal compositing.
In the second step, all processes compute a global partition
(black lines) to ensure that groups in the third step will op-
erate on matching regions. Some group members have to re-
distribute composited areas because of this. The third step
operates like the first, and the final image is shown in the
fourth step.

Figure 1 provides a simple illustration of our load balanc-
ing algorithm using four processes and group sizes of two.
The boxes represent the local image on each process, and
the gray areas around the boxes indicate the groups. We de-
scribe partitions of images as either local or global. A local
partition is computed by a group of processes and a global
partition is computed by every process. Red lines are used to
denote local partitions and black lines indicate global parti-
tions.

In the first step, groups compute a local partition of the im-
age such that the area encompassed by the bounding boxes
will be evenly divided among group members. The respec-
tive regions are exchanged and the compositing operator is
performed. The composited subimages are shown in the sec-
ond step.

In the second step, all processes must agree on a global
partition of the image such that groups in the third step will
operate on matching regions. The global partition is created
by dividing the area covered by the bounding boxes across
all processes, ensuring that later intergroup compositing

c© The Eurographics Association 2010.



Kendall et al. / Accelerating and Benchmarking Radix-k Image Compositing at Large Scale

workloads will be balanced. Because of this new partition,
processes may have to redistribute parts of their composited
subimages to other members in the group. For example, in
the second step, p1 has to give the region above the parti-
tion to p0. This is because p1 is only operating on the lower
region in the third step. Similarly, p0 is operating on the up-
per region in the third step and needs this portion of data for
correct compositing to occur.

The third step operates like the first one. The groups com-
pute a local partition of the image such that group members
perform equal compositing work. The respective regions are
exchanged and the compositing operator is performed to ob-
tain the final image shown in the fourth step.

Local and global partitions are computed using the same
algorithm with different inputs: the former uses bounding
boxes of the group while the latter uses bounding boxes of
all processes. A simple method for determining the best par-
tition is to compute a count of the number of bounding boxes
that overlap each pixel. An equal division of the area covered
by bounding boxes could then be determined by equally di-
viding the prefix sum of all the counts. This algorithm is
O(wh) where w and h are the width and the height of the
image. Our approach computes a count of the widths of the
bounding boxes that overlap each row of the image. We can
then compute a prefix sum of the counts and estimate the best
partition. For cases when estimating the division of a single
row, the minimum and maximum column values of the over-
lapping bounding boxes of the row are taken into account.
This algorithm is O(h) and showed little difference in load
imbalance when compared to the O(wh) approach.

Our method assumes that each process has one or more
bounding boxes containing nonempty data. This assumption
is reasonable but does introduce unequal work when bound-
ing boxes contain empty pixels. Our method also requires a
collective gathering (MPI_Allgather) of the bounding boxes
of all processes. This communication step occurs only once,
and the overhead was negligible in all of our tests.

3.4. Test Environment

For testing, synthetic images were used for tuning k-values
to architectures (Section 4) and load balancing (Section 5).
These are checkerboard patterns that are slightly offset from
one process to another and have partial transparency for each
pixel. The number of bounded pixels per process was deter-
mined using Equation 1, and the location of the bounded area
was determined randomly. Our synthetic image benchmark
also has the ability to perform zooming. Test results for the
synthetic patterns were compared with a serial version of
the compositing code to verify correctness. In Section 6, a
scientific dataset was used instead of synthetic images. The
dataset is from a simulation of the standing accretion shock
instability in a core-collapse supernova [Iri06]. In all cases, a
four-byte floating-point value (0.0 - 1.0) for each of the four

R,G,B,A channels represented each pixel. Image sizes varied
from 4 to 64 megapixels. We tested power-of-two processes
to compare against binary swap; however, [PGR∗09] showed
that Radix-k performs similarly at other process counts.

The volume renderer for the scientific dataset is a software
ray caster that uses kd-partitioning to divide the data in ob-
ject space. It has no acceleration schemes such as early ray
termination or load balancing. The renderer stores bounding
box information for the image at each process. We note that
our Radix-k enhancements also apply to ray casters that use
multiple bounding boxes.

Our tests were conducted on two platforms at the Argonne
National Laboratory and two platforms at the Oak Ridge Na-
tional Laboratory. At Argonne, the IBM Blue Gene/P In-
trepid contains 40,960 nodes consisting of quad-core 850
MHz IBM PowerPC processors. The nodes are connected
in a 3D torus topology. Our tests were conducted in SMP
mode, that is, one process per node. Eureka is a graphics
cluster that contains 100 nodes consisting of two quad-core
2 GHz Intel Xeon processors and two nVidia FX5600 graph-
ics cards. The compute nodes are connected by a 10 Gb/s
Myrinet switching fabric.

At Oak Ridge, the Cray XT5 Jaguar, currently the fastest
supercomputer in the world, consists of 18,688 nodes that
contain two hex-core 2.6 GHz AMD Opteron processors.
The nodes are connected in a 3D torus topology. Lens is a
32 node visualization and analysis cluster. Each node con-
tains four quad-core 2.3 GHz AMD Opteron processors. The
nodes are connected by a 20 Gb/s DDR Infiniband network.

4. Tuning to Architectures

We begin with an analysis of the target k-values to use for
various architectures. Our goal is to have a single target k-
value chosen by a lookup table based on number of processes
and image size, so that the algorithm can automatically de-
termine the k-values for each round. This analysis is per-
formed with the bounding box and RLE optimizations using
synthetic images.

We tested image sizes of 4, 8, 16, and 32 megapixels five
times each with random bounding box locations and selected
the k-value with the lowest time. We used our synthetic
checkerboard images and bounding box sizes that were de-
termined by Equation 1. We tested k-values of 2, 4, 8, 16,
32, 64, and 128.

To quantify the overlap of communication with composit-
ing computation, we used

O =
Computation

(CommWait +Computation)
(2)

where CommWait represents the time spent waiting dur-
ing communication and Computation is the time spent per-
forming the compositing operator. Figure 2 provides an il-
lustration of these. O is used to estimate the overlap of
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HHH
HHp

i
4 8 16 32

8 8 8 8 8
16 16 16 16 16
32 32 32 32 32
64 64 64 64 64

128 64 128 128 128
256 64 128 128 128
512 64 128 128 128
1 K 64 128 128 128
2 K 32 128 128 128
4 K 32 32 32 32
8 K 32 32 32 32

16 K 32 32 32 32
32 K 32 32 32 32

(a) Intrepid

HHH
HHp

i
4 8 16 32

8 4 4 4 4
16 4 4 4 4
32 16 8 16 16
64 16 16 16 16

128 8 8 8 8
256 16 8 8 8
512 16 32 8 8
1 K 64 32 32 8
2 K 8 32 32 32
4 K 8 16 32 64
8 K 4 8 32 64

16 K 4 32 32 8
32 K 16 16 64 8

(b) Jaguar
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i
4 8 16 32

8 8 8 8 8
16 16 16 16 16
32 32 32 32 32
64 16 32 16 32
128 64 64 64 64

(c) Lens

HH
HHHp

i
4 8 16 32

8 8 8 8 8
16 8 16 16 16
32 32 32 32 32
64 32 32 32 32
128 32 64 64 32

(d) Eureka

Table 1: Target k-values for (a) Intrepid, (b) Jaguar, (c) Lens, and (d) Eureka where p is the number of processes and i is the
image size in megapixels. The target k-values represent the best group sizes to use when compositing and vary with different
image sizes and process counts. These tables were encoded into our Radix-k implementation and used in all experiments.

Figure 2: Illustration of the CommWait and Computation pa-
rameters in Equation 2. These parameters are useful in esti-
mating the overlap of communication and computation when
compositing.

communication with computation. Higher O values repre-
sent greater overlap efficiency. Along with O, we computed
the relative compression ratio by dividing the amount of data
that would have been transferred without RLE by the amount
transferred with RLE.

Results for the target k-values on Intrepid are shown in
Table 1a. The average O for all the target k-values was 0.58,
meaning there was significant overlap between composit-
ing and communication, thus allowing us to go to higher
k-values. Since there are six bidirectional links per node,
communication and compositing can be overlapped to a high
degree. When scaling to four racks or more (p >= 4 K), we
observed compression ratios of 145:1 and presumed that the
smaller k-values are better for higher latency overhead and
smaller messages. At p≤ 64, direct-send performed the best,
that is, k = p. Binary swap (k = 2,2, ...) was never the opti-
mal algorithm on Intrepid.

Jaguar results appear in Table 1b. The average O for all
the target k-values was 0.22, meaning there was less over-
lap between communication and computation; thus, Jaguar
was not performing as well at higher k-values compared to
Intrepid. Both machines have 3D tori, but Jaguar’s 6 bidi-
rectional links must support 12 cores. In addition, Jaguar’s
interconnect is shared between all running jobs, unlike Blue
Gene/P which dedicates a partition to one job. There is also
no guarantee on Jaguar about the physical placement of
nodes with respect to each other, meaning a partition can
be fragmented or have a suboptimal shape. In general, using
a target k-value of 8 or 16 gave good performance. Unlike
Intrepid, there were no immediate patterns recognized when
scaling to many cabinets. Direct-send and binary swap were
never optimal.

Lens results can be found in Table 1c. The average O for
all target k-values was 0.29. Lens has 16 cores per node,
allowing more intranode communication and less network
contention. We believe this was the primary reason why the
O value of Lens was greater than that of Jaguar. Direct-send
was the optimal algorithm in almost every case.

Eureka results are shown in Table 1d. The average O for
all target k-values was 0.10. The results showed that direct-
send is the optimal algorithm in almost every case. We credit
this to higher compression ratios that were occurring with
higher k-values. For example, direct-send was showing a
compression ratio of 25:1 compared to the 10:1 compression
ratio of binary swap.
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We encoded these tables for Intrepid, Jaguar, Lens, and
Eureka into our algorithm and selected k-values automati-
cally from the tables for the remainder of our tests. We per-
formed a nearest-neighbor selection in the table when using
untested parameters. When process counts were not divisi-
ble by the target k-value, we determined the factor closest to
the target k-value.

5. Load Balancing

We provide an example of how our load balancing method
affects the computation workload across processes. Figure 3
shows a comparison of Jumpshot logs using the synthetic
benchmark on Intrepid with (3a) and without (3b) load bal-
ancing for 64 processes and a target k-value of 8. Jumpshot
is a profiling tool [CGL08] that shows time on the horizon-
tal axis, and each process is a row in the image. The blue
areas denote the computation while salmon and red regions
are communication. Green represents the encoding of the
images and yellow represents idle time. The load-balanced
upper image shows a more even distribution of composit-
ing across processes. Figure 3a has a white rectangle around
the region where the redistribution step occurred during load
balancing. This corresponds to step two of Figure 1. It is ev-
ident this step is quite expensive, and as we will see, it does
not always pay off. The goal of our analysis is to determine
for how many processes, and for what level of imbalance,
our load balancing algorithm reduces the total compositing
time.

We tested load balancing of the synthetic benchmark on
each architecture at various process counts with an image
size of 32 megapixels. We used zoom factors of 1.0 and 0.5
in our tests. Each test was averaged over five random bound-
ing box locations. We used the target k-values found from
Section 4 for each architecture. Figure 4 shows the improve-
ment factor (time without load balancing divided by time
with load balancing) that was obtained in this experiment.

Intrepid (4a) benefited from using our load balancing
method at p < 1 K. An improvement factor of over 2.5 is
shown in some cases when zoom = 0.5. The redistribution
step, however, dominated the overall benefits of balanced
compositing computation at p≥ 1 K. Similarly, Jaguar (4a)
showed reduced performance when scaling to higher num-
bers of processes. The performance gains of using load bal-
ancing on Jaguar were not as apparent as Intrepid. This
correlates with Jaguar having lower k-values than Intrepid,
causing more rounds of compositing, thus more expensive
redistribution steps.

Lens (4b) showed over double increase in performance in
some circumstances, and the redistribution step is avoided in
many cases because k = p. On the other hand, Eureka (4b)
results were mixed. Although Lens and Eureka have similar
switched networks, the network bandwidth on Lens is twice
that of Eureka’s, which helped accommodate the additional
communication needed for load balancing.

(a) With Load Balancing

(b) Without Load Balancing

Figure 3: Jumpshot logs showing the synthetic benchmark
(a) with and (b) without load balancing using 64 processes.
Time is plotted on the x-axis and process numbers are plot-
ted on the y-axis. The blue color denotes the compositing
operator, while salmon and red indicate communication and
waiting on messages. Green represents the encoding of the
images and yellow represents idle time. The white rectan-
gle in (a) encompasses the redistribution step explained in
Figure 1.

We quantify when to use load balancing with

L =
σWork/µWork

r
(3)

where σWork and µWork are the standard deviation and mean
of work across all processes in the first compositing round,
and r is the number of rounds. We only considered the work
in the first round in Equation 3 because the first round is most
sensitive to imbalance. L is used to decide when to turn load
balancing on and off, and higher L values indicate when our
load balancing method should give us better performance.
Dividing by r compensates for the fact that load balancing is
more costly for more rounds.

We also tested other variants of the algorithm that avoided
multiple redistribution steps. One variant was to simply turn
off load balancing after the first round. The majority of
the results showed highly skewed intergroup load imbal-
ance in subsequent rounds and generally gave poorer results.
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Figure 4: Improvement factor of using load balancing when compared to no load balancing (log-log scale). This test was
conducted on a 32 megapixel image in the synthetic benchmark using zoom factors of 1.0 and 0.5. Improvement factor is
calculated by dividing the time without load balancing by the time with load balancing. A factor below one indicates that using
no load balancing resulted in better performance.

Another variant that avoided the redistribution step was us-
ing one global partition of the image that divided all bound-
ing boxes evenly. This also often resulted in skewed work-
load across groups and generally resulted in worse perfor-
mance.

In Radix-k, we completely turned off load balancing at
p > 512 because of the results from Figure 4. Images are
so finely partitioned at scales greater than 512 processes
that compositing is more communication-bound rather than
computation-bound. When p ≤ 512, we turned on load bal-
ancing above certain thresholds of L in our implementation.
We found L > 0.5 to fit most of the results for Intrepid,
Jaguar, and Lens. L > 0.8 was used for Eureka.

6. Volume Rendering Large Images

We tested Radix-k in a volume renderer and rendered images
of a supernova core collapse simulation. We used three zoom
levels, depicted in Figure 5. We tested strong scaling and
performed a comparison against binary swap on all architec-
tures. The previously discussed optimizations were used in
our Radix-k implementation. Timing results included the en-
tire compositing algorithm, including encoding and decod-
ing of images.

6.1. Scalability

Strong scaling tests were conducted using a 64 megapixel
image size with the three scenarios depicted in Figure 5. Re-
sults are shown in Figure 6 for the three zoom factors. K-
values were automatically selected using the nearest value
in Table 1 for the number of processes and image size, and

load balancing was turned on based on the rules derived in
Section 5.

Intrepid (6a) showed decreased time at more processes
in most cases. When load balancing was turned on, we ob-
served an improvement factor of over 1.5 in most cases when
compared to no load balancing. Jaguar (6a) showed similar
behavior to Intrepid. At our intermediate zoom factor of 1.5,
we were compositing the 64 megapixel image in 0.08 sec-
onds (12.5 FPS) at 32 K processes, a near-interactive frame
rate. When load balancing was turned on, an improvement
factor of over 1.5 was gained in most cases when compared
to no load balancing.

Eureka (6b) was the only system that did not show de-
creased time at larger process counts. We credit this to the
poor O values that were observed when doing the initial k-
value testing in Section 4 and conclude the network was a
bottleneck; however, further benchmarking is needed to ver-
ify this. Lens (6b) showed modest decreased compositing
time under most circumstances. For the cases when load bal-
ancing was turned on, an improvement factor of over 1.7 was
obtained many times when compared to not using load bal-
ancing.

6.2. Comparison to Binary Swap

For all architectures, we compared the improvement factor
of Radix-k versus binary swap (binary swap time divided by
Radix-k time) for the three scenarios depicted in Figure 5
and 64 megapixel image sizes. It is important to note that
our binary swap used k-values of two and the same RLE
implementation as Radix-k. Figure 7 shows the results.
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(a) zoom = 3.0 (b) zoom = 1.5 (c) zoom = 0.5

Figure 5: Volume rendering of one time step of a core-collapse supernova simulation at various zoom levels. We used these
three scenarios in our volume rendering experiments.
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Figure 6: Strong scaling of Radix-k (log-log scale). The experiment was conducted using our volume renderer on a 64 megapixel
image size with the three zoom levels depicted in Figure 5.

Binary swap outperformed Radix-k in a few experiments,
suggesting that our target k-values were not always optimal
for the renderings. The results, however, showed improved
performance over binary swap at almost all scales. For many
results, compression ratios were up to ten times better than
binary swap, further helping provide the improved perfor-
mance.

An improvement factor of over 1.5 was obtained in most
cases on the visualization clusters (7b). Jaguar (7a) showed
modest improvement at most scales, but improvement fac-
tors of over 1.5 were noticed in some situations. We surmise
that this is because smaller k-values were being used. On
Intrepid (7a), Radix-k was over five times as fast as binary
swap in many experiments. This result showed the benefits

of using higher k-values on architectures like Blue Gene/P
that have many network interconnects per processor.

7. Summary

In the past, compositing at many processes did not scale
well. Increasing the number of processes resulted in either
a flat or slowly increasing compositing time. At tens of
thousands of processes, this performance degradation can
be severe [PYR∗09]. Most of our results showed decreased
time at larger process counts when each process started with
the same complete image size. Such scalability out to 64
megapixel image size and 32 K cores is needed in order for
parallel visualization to keep pace with the growing scale of
simulation data.
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Figure 7: Improvement factor of Radix-k over binary swap (log-log scale). The experiment was conducted using our volume
renderer on a 64 megapixel image size with the three zoom levels depicted in Figure 5. Improvement factor is calculated by
dividing binary swap time by Radix-k time. A factor below one indicates that binary swap performed better.

The computational power of today comes in many varia-
tions. We have shown that the improvements to the Radix-k
algorithm can be geared towards a wide variety of these com-
putational architectures. Graphics clusters, often containing
ordinary networks, benefit from the additional compression
that comes with using RLE and high k-values in Radix-k.
On the other hand, cutting-edge machines benefit from hav-
ing multiple network interconnects that can overlap compu-
tation with the compressed messages to higher degrees.

The improvements to Radix-k, which include our efficient
RLE scheme and new load balancing method, outperformed
optimized binary swap at even higher factors than reported
in [PGR∗09]. We have also shown that we can automate the
process of determining a proper configuration for any archi-
tecture, a process that is needed to place Radix-k in produc-
tion use to further make impacts in small- and large-scale
visualization applications.

In our current and future work, we are continuing to pre-
pare Radix-k for production use. To do so, we plan to imple-
ment polygon compositing with individual depth values for
each pixel, and to benchmark Radix-k with volume render-
ers that produce multiple bounding boxes per process. For
better scalability of load balancing, we also want to research
methods that balance communication along with computa-
tion, and we would like to compare our method with the in-
terleaved scanline algorithm presented in [TIH03]. Another
area for future study is for time-varying volume rendering
where we can use occlusion information from previous time
steps to ease the compositing and communication workload.
Our primary future goal is to implement Radix-k in produc-
tion image compositing libraries such as IceT that are used in
mainstream visualization packages like ParaView and VisIt.
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